Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 96(14): e0068822, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35862706

RESUMO

Herpes simplex virus (HSV) infection of the eye can result in a blinding immunoinflammatory lesion in the cornea called herpetic stromal keratitis (HSK). This lesion is orchestrated by T cells and can be reduced in magnitude by anti-inflammatory drugs and procedures that change the balance of cellular participants in lesions. This report evaluates the effect of drugs that cause metabolic reprogramming on lesion expression using two drugs that affect glucose metabolism: 2-deoxy-d-glucose (2DG) and metformin. Both drugs could limit HSK severity, but 2DG therapy could result in herpes encephalitis if used when replicating virus was still present. The reason metformin was a safer therapy was its lack of marked inhibitory effects on inflammatory cells particularly interferon-γ (IFN-γ)-producing Th1 and CD8 T cells in the trigeminal ganglion (TG), in which HSV latency is established and sustained. Additionally, whereas 2DG in TG cultures with established latency accelerated the termination of latency, this did not occur in the presence of metformin, likely because the inflammatory cells remained functional. Our results support the value of metabolic reprogramming to control viral immunoinflammatory lesions, but the approach used should be chosen with caution. IMPORTANCE Herpes simplex virus (HSV) infection of the eye is an example where damaging lesions are in part the consequence of a host response to the infection. Moreover, it was shown that changing the representation of cellular participants in the inflammatory reaction can minimize lesion severity. This report explores the value of metabolic reprogramming using two drugs that affect glucose metabolism to achieve cellular rebalancing. It showed that two drugs, 2-deoxy-d-glucose (2DG) and metformin, effectively diminished ocular lesion expression, but only metformin avoided the complication of HSV spreading to the central nervous system (CNS) and causing herpetic encephalitis. The report provides some mechanistic explanations for the findings.


Assuntos
Desoxiglucose , Herpes Simples , Herpesvirus Humano 1 , Ceratite Herpética , Metformina , Animais , Córnea , Desoxiglucose/farmacologia , Glucose/metabolismo , Herpes Simples/tratamento farmacológico , Herpes Simples/imunologia , Herpesvirus Humano 1/patogenicidade , Ceratite Herpética/tratamento farmacológico , Ceratite Herpética/imunologia , Metformina/farmacologia , Camundongos , Linfócitos T/imunologia , Gânglio Trigeminal/imunologia
2.
Invest Ophthalmol Vis Sci ; 63(2): 4, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103749

RESUMO

Purpose: Herpes stromal keratitis (HSK) represents a spectrum of pathologies which is caused by herpes simplex virus type 1 (HSV-1) infection and is considered a leading cause of infectious blindness. HSV-1 infects corneal sensory nerves and establishes latency in the trigeminal ganglion (TG). Recently, retraction of sensory nerves and replacement with "unsensing" sympathetic nerves was identified as a critical contributor of HSK in a mouse model where corneal pathology is caused by primary infection. This resulted in the loss of blink reflex, corneal desiccation, and exacerbation of inflammation leading to corneal opacity. Despite this, it was unclear whether inflammation associated with viral reactivation was sufficient to initiate this cascade of events. Methods: We examined viral reactivation and corneal pathology in a mouse model with recurrent HSK by infecting the cornea with HSV-1 (McKrae) and transferring (intravenous [IV]) human sera to establish primary infection without discernible disease and then exposed the cornea to UV-B light to induce viral reactivation. Results: UV-B light induced viral reactivation from latency in 100% of mice as measured by HSV-1 antigen deposition in the cornea. Further, unlike conventional HSK models, viral reactivation resulted in focal retraction of sensory nerves and corneal opacity. Dependent on CD4+ T cells, inflammation foci were innervated by sympathetic nerves. Conclusions: Collectively, our data reveal that sectoral corneal sensory nerve retraction and replacement of sympathetic nerves were involved in the progressive pathology that is dependent on CD4+ T cells after viral reactivation from HSV-1 latency in the UV-B induced recurrent HSK mouse model.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Substância Própria/lesões , Infecções Oculares Virais/patologia , Herpes Simples/patologia , Imunidade Celular , Ceratite Herpética/patologia , Sistema Nervoso Simpático/patologia , Animais , Piscadela/fisiologia , Substância Própria/patologia , Substância Própria/virologia , Modelos Animais de Doenças , Infecções Oculares Virais/imunologia , Infecções Oculares Virais/virologia , Feminino , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1 , Ceratite Herpética/imunologia , Ceratite Herpética/virologia , Masculino , Camundongos , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/patologia
3.
FEBS Open Bio ; 11(1): 300-311, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33155431

RESUMO

Migraine is a debilitating neurological condition, with a global prevalence rate of 10.68% in men and 18.79% in women. Elucidation of the molecular mechanisms underlying migraines is of great importance for improving the quality of life of patients. The release of the neuropeptide calcitonin gene-related peptide (CGRP) from trigeminal nerve terminals is involved in the pathogenesis of migraine. Recent studies have shown that up-regulation of miR-34a-5p expression is associated with acute migraine attacks. Here, we investigated whether alteration of the expression of miR-34a-5p induces the release of the vasoactive peptide CGRP. We isolated primary rat trigeminal ganglion neurons and performed gain- and loss-of-function assays to alter the expression level of miR-34a-5p. Down-regulation of miR-34a-5p inhibited the expression of interleukin-1ß (IL-1ß)/cyclooxygenase 2 (COX2)/prostaglandin E2 (PGE2), decreased IL-1ß, PGE2 and CGRP release, and up-regulated the expression of silencing information regulator 1 (SIRT1) in trigeminal ganglion, whereas overexpression of miR-34a-5p enhanced the expression of IL-1ß/COX2/PGE2, increased the release of IL-1ß, PGE2 and CGRP, and decreased the expression of SIRT1 in trigeminal ganglion. In addition, overexpression of miR-34a-5p induced apoptosis in primary rat trigeminal neurons. In summary, these findings suggest that miR-34a-5p up-regulates the IL-1ß/COX2/PGE2 inflammation pathway, induces apoptosis and enhances release of CGRP via inhibition of SIRT1 expression in trigeminal ganglion neurons; thus, miR-34a-5p may have potential as a therapeutic target for the treatment of migraine.


Assuntos
MicroRNAs/metabolismo , Transtornos de Enxaqueca/genética , Sirtuína 1/genética , Animais , Animais Recém-Nascidos , Apoptose/genética , Apoptose/imunologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Inflamação/genética , Inflamação/imunologia , Interleucina-1beta/metabolismo , Transtornos de Enxaqueca/imunologia , Transtornos de Enxaqueca/patologia , Neurônios/metabolismo , Cultura Primária de Células , Ratos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Sirtuína 1/metabolismo , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/patologia , Regulação para Cima/imunologia
4.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796067

RESUMO

Neurotropic Alphaherpesvirinae subfamily members such as bovine herpesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) establish and maintain lifelong latent infections in neurons. Following infection of ocular, oral, or nasal cavities, sensory neurons within trigeminal ganglia (TG) are an important site for latency. Certain external stressors can trigger reactivation from latency, in part because activation of the glucocorticoid receptor (GR) stimulates productive infection and promoters that drive expression of key viral transcriptional regulators. The Akt serine/threonine protein kinase family is linked to maintaining latency. For example, Akt3 is detected in more TG neurons during BoHV-1 latency than in reactivation and uninfected calves. Furthermore, Akt signaling correlates with maintaining HSV-1 latency in certain neuronal models of latency. Finally, an active Akt protein kinase is crucial for the ability of the HSV-1 latency-associated transcript (LAT) to inhibit apoptosis in neuronal cell lines. Consequently, we hypothesized that viral and/or cellular factors impair stress-induced transcription and reduce the incidence of reactivation triggered by low levels of stress. New studies demonstrate that Akt1 and Akt2, but not Akt3, significantly reduced GR-mediated transactivation of the BoHV-1 immediate early transcription unit 1 (IEtu1) promoter, the HSV-1 infected cell protein 0 (ICP0) promoter, and the mouse mammary tumor virus long terminal repeat (MMTV-LTR). Akt3, but not Akt1 or Akt2, significantly enhanced neurite formation in mouse neuroblastoma cells, which correlates with repairing damaged neurons. These studies suggest that unique biological properties of the three Akt family members promote the maintenance of latency in differentiated neurons.IMPORTANCE External stressful stimuli are known to increase the incidence of reactivation of Alphaherpesvirinae subfamily members. Activation of the glucocorticoid receptor (GR) by the synthetic corticosteroid dexamethasone (DEX) stimulates bovine herpesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) reactivation. Furthermore, GR and dexamethasone stimulate productive infection and promoters that drive expression of viral transcriptional regulators. These observations lead us to predict that stress-induced transcription is impaired by factors abundantly expressed during latency. Interestingly, activation of the Akt family of serine/threonine protein kinases is linked to maintenance of latency. New studies reveal that Akt1 and Ak2, but not Akt3, impaired GR- and dexamethasone-mediated transactivation of the BoHV-1 immediate early transcription unit 1 and HSV-1 ICP0 promoters. Strikingly, Akt3, but not Akt1 or Akt2, stimulated neurite formation in mouse neuroblastoma cells, a requirement for neurogenesis. These studies provide insight into how Akt family members may promote the maintenance of lifelong latency.


Assuntos
Herpes Simples/imunologia , Infecções por Herpesviridae/imunologia , Interações Hospedeiro-Patógeno/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Células Receptoras Sensoriais/virologia , Animais , Bovinos , Diferenciação Celular , Linhagem Celular Tumoral , Herpes Simples/genética , Herpes Simples/patologia , Herpes Simples/virologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/imunologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/imunologia , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/imunologia , Camundongos , Neuritos/imunologia , Neuritos/ultraestrutura , Neuritos/virologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/genética , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/imunologia , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/patologia , Transdução de Sinais , Ativação Transcricional/imunologia , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/patologia , Gânglio Trigeminal/virologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia
5.
J Neurovirol ; 26(5): 687-695, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32671812

RESUMO

Pseudorabies virus (PRV) establishes a lifelong latent infection in swine trigeminal ganglion (TG) following acute infection. Increased corticosteroid levels, due to stress, increases the incidence of reactivation from latency. Muscle injection combined with intravenous deliver of the synthetic corticosteroid dexamethasone (DEX) consistently induces reactivation from latency in pigs. In this study, PRV-free piglets were infected with PRV. Viral shedding in nasal and ocular swabs demonstrated that PRV infection entered the latent period. The anti-PRV antibody was detected by enzyme-linked immunosorbent assay and the serum neutralization test, which suggested that the PRV could establish latent infection in the presence of humoral immunity. Immunohistochemistry and viral genome detection of TG neurons suggested that PRV was reactivated from latency. Viral gene expressions of IE180, EP0, VP16, and LLT-intron were readily detected at 3-h post-DEX treatment, but gB, a γ1 gene, was not detectable. The differentially expressed phosphorylated proteins of TG neurons were analyzed by ITRAQ coupled with LC-MS/MS, and p-EIF2S2 differentially expression was confirmed by western blot assay. Taken together, our study provides the evidence that typical gene expression in PRV reactivation from latency in TG is disordered compared with known lytic infection in epithelial cells.


Assuntos
Dexametasona/farmacologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Herpesvirus Suídeo 1/efeitos dos fármacos , Pseudorraiva/virologia , Doenças dos Suínos/virologia , Gânglio Trigeminal/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos , Animais , Anticorpos Antivirais/sangue , Olho/virologia , Glucocorticoides/farmacologia , Proteína Vmw65 do Vírus do Herpes Simples/genética , Proteína Vmw65 do Vírus do Herpes Simples/imunologia , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/imunologia , Herpesvirus Suídeo 1/patogenicidade , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/imunologia , Imunidade Humoral/efeitos dos fármacos , Cavidade Nasal/virologia , Neurônios/efeitos dos fármacos , Neurônios/imunologia , Neurônios/virologia , Pseudorraiva/imunologia , Pseudorraiva/patologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/patologia , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/virologia , Latência Viral/efeitos dos fármacos , Eliminação de Partículas Virais/efeitos dos fármacos
6.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L953-L964, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159971

RESUMO

The lungs and the immune and nervous systems functionally interact to respond to respiratory environmental exposures and infections. The lungs are innervated by vagal sensory neurons of the jugular and nodose ganglia, fused together in smaller mammals as the jugular-nodose complex (JNC). Whereas the JNC shares properties with the other sensory ganglia, the trigeminal (TG) and dorsal root ganglia (DRG), these sensory structures express differential sets of genes that reflect their unique functionalities. Here, we used RNA sequencing (RNA-seq) in mice to identify the differential transcriptomes of the three sensory ganglia types. Using a fluorescent retrograde tracer and fluorescence-activated cell sorting, we isolated a defined population of airway-innervating JNC neurons and determined their differential transcriptional map after pulmonary exposure to lipopolysaccharide (LPS), a major mediator of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) after infection with gram-negative bacteria or inhalation of organic dust. JNC neurons activated an injury response program, leading to increased expression of gene products such as the G protein-coupled receptor Cckbr, inducing functional changes in neuronal sensitivity to peptides, and Gpr151, also rapidly induced upon neuropathic nerve injury in pain models. Unique JNC-specific transcripts, present at only minimal levels in TG, DRG, and other organs, were identified. These included TMC3, encoding for a putative mechanosensor, and urotensin 2B, a hypertensive peptide. These findings highlight the unique properties of the JNC and reveal that ALI/ARDS rapidly induces a nerve injury-related state, changing vagal excitability.


Assuntos
Gânglio Nodoso/efeitos dos fármacos , Pneumonia/genética , Receptor de Colecistocinina B/genética , Células Receptoras Sensoriais/efeitos dos fármacos , Transcriptoma , Traumatismos do Nervo Vago/genética , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/imunologia , Gânglios Espinais/patologia , Perfilação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Gânglio Nodoso/imunologia , Gânglio Nodoso/patologia , Hormônios Peptídicos/genética , Hormônios Peptídicos/imunologia , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Pneumonia/patologia , Receptor de Colecistocinina B/imunologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/patologia , Análise de Sequência de RNA , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/patologia , Traumatismos do Nervo Vago/induzido quimicamente , Traumatismos do Nervo Vago/imunologia , Traumatismos do Nervo Vago/patologia
7.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31645447

RESUMO

Herpes simplex virus 1 (HSV-1) causes a lifelong infection of neurons that innervate barrier sites like the skin and mucosal surfaces like the eye. After primary infection of the cornea, the virus enters latency within the trigeminal ganglion (TG), from which it can reactivate throughout the life of the host. Viral latency is maintained, in part, by virus-specific CD8+ T cells that nonlethally interact with infected neurons. When CD8+ T cell responses are inhibited, HSV-1 can reactivate, and these recurrent reactivation events can lead to blinding scarring of the cornea. In the C57BL/6 mouse, CD8+ T cells specific for the immunodominant epitope from glycoprotein B maintain functionality throughout latency, while CD8+ T cells specific for subdominant epitopes undergo functional impairment that is associated with the expression of the inhibitory checkpoint molecule programmed death 1 (PD-1). Here, we investigate the checkpoint molecule T cell immunoglobulin and mucin domain-containing 3 (Tim-3), which has traditionally been associated with CD8+ T cell exhaustion. Unexpectedly, we found that Tim-3 was preferentially expressed on highly functional ganglionic CD8+ T cells during acute and latent HSV-1 infection. This, paired with data that show that Tim-3 expression on CD8+ T cells in the latently infected TG is influenced by viral gene expression, suggests that Tim-3 is an indicator of recent T cell stimulation, rather than functional compromise, in this model. We conclude that Tim-3 expression is not sufficient to define functional compromise during latency; however, it may be useful in identifying activated cells within the TG during HSV-1 infection.IMPORTANCE Without an effective means of eliminating HSV-1 from latently infected neurons, efforts to control the virus have centered on preventing viral reactivation from latency. Virus-specific CD8+ T cells within the infected TG have been shown to play a crucial role in inhibiting viral reactivation, and with a portion of these cells exhibiting functional impairment, checkpoint molecule immunotherapies have presented a potential solution to enhancing the antiviral response of these cells. In pursuing this potential treatment strategy, we found that Tim-3 (often associated with CD8+ T cell functional exhaustion) is not upregulated on impaired cells but instead is upregulated on highly functional cells that have recently received antigenic stimulation. These findings support a role for Tim-3 as a marker of activation rather than exhaustion in this model, and we provide additional evidence for the hypothesis that there is persistent viral gene expression in the HSV-1 latently infected TG.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Regulação da Expressão Gênica/imunologia , Receptor Celular 2 do Vírus da Hepatite A/imunologia , Herpesvirus Humano 1/fisiologia , Ativação Linfocitária , Receptor de Morte Celular Programada 1/imunologia , Gânglio Trigeminal , Latência Viral/imunologia , Animais , Biomarcadores , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/virologia , Feminino , Camundongos , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/patologia , Gânglio Trigeminal/virologia
8.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597775

RESUMO

Demyelinating central nervous system (CNS) disorders like multiple sclerosis (MS) and acute disseminated encephalomyelitis (ADEM) have been difficult to study and treat due to the lack of understanding of their etiology. Numerous cases point to the link between herpes simplex virus (HSV) infection and multifocal CNS demyelination in humans; however, convincing evidence from animal models has been missing. In this work, we found that HSV-1 infection of the cotton rat Sigmodon hispidus via a common route (lip abrasion) can cause multifocal CNS demyelination and inflammation. Remyelination occurred shortly after demyelination in HSV-1-infected cotton rats but could be incomplete, resulting in "scars," further supporting an association between HSV-1 infection and multifocal demyelinating disorders. Virus was detected sequentially in the lip, trigeminal ganglia, and brain of infected animals. Brain pathology developed primarily on the ipsilateral side of the brain stem, in the cerebellum, and contralateral side of the forebrain/midbrain, suggesting that the changes may ascend along the trigeminal lemniscus pathway. Neurologic defects occasionally detected in infected animals (e.g., defective whisker touch and blink responses and compromised balance) could be representative of the brain stem/cerebellum dysfunction. Immunization of cotton rats with a split HSV-1 vaccine protected animals against viral replication and brain pathology, suggesting that vaccination against HSV-1 may protect against demyelinating disorders.IMPORTANCE Our work demonstrates for the first time a direct association between infection with herpes simplex virus 1, a ubiquitous human pathogen generally associated with facial cold sores, and multifocal brain demyelination in an otherwise normal host, the cotton rat Sigmodon hispidus For a long time, demyelinating diseases were considered to be autoimmune in nature and were studied by indirect methods, such as immunizing animals with myelin components or feeding them toxic substances that induce demyelination. Treatment against demyelinating diseases has been elusive, partially because of their unknown etiology. This work provides the first experimental evidence for the role of HSV-1 as the etiologic agent of multifocal brain demyelination in a normal host and suggests that vaccination against HSV-1 can help to combat demyelinating disorders.


Assuntos
Doenças Desmielinizantes/prevenção & controle , Encefalite/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Herpes Simples/prevenção & controle , Herpesvirus Humano 1/efeitos dos fármacos , Animais , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/imunologia , Tronco Encefálico/patologia , Tronco Encefálico/virologia , Cerebelo/efeitos dos fármacos , Cerebelo/imunologia , Cerebelo/patologia , Cerebelo/virologia , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/virologia , Modelos Animais de Doenças , Encefalite/imunologia , Encefalite/patologia , Encefalite/virologia , Feminino , Herpes Simples/imunologia , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/patogenicidade , Humanos , Masculino , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/imunologia , Prosencéfalo/patologia , Prosencéfalo/virologia , Sigmodontinae , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/patologia , Gânglio Trigeminal/virologia , Vacinação , Carga Viral/efeitos dos fármacos
10.
Mol Neurobiol ; 56(12): 7929-7949, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31129808

RESUMO

The benefits of opioid-based treatments to mitigate chronic pain can be hindered by the side effects of opioid-induced hyperalgesia (OIH) that can lead to higher consumption and risk of addiction. The present study advances the understanding of the molecular mechanisms associated with OIH by comparing mice presenting OIH symptoms in response to chronic morphine exposure (OIH treatment) relative to control mice (CON treatment). Using RNA-Seq profiles, gene networks were inferred in the trigeminal ganglia (TG), a central nervous system region associated with pain signaling, and in the nucleus accumbens (NAc), a region associated with reward dependency. The biological process of nucleic acid processing was over-represented among the 122 genes that exhibited a region-dependent treatment effect. Within the 187 genes that exhibited a region-independent treatment effect, circadian rhythm processes were enriched among the genes over-expressed in OIH relative to CON mice. This enrichment was supported by the differential expression of the period circadian clock 2 and 3 genes (Per2 and Per3). Transcriptional regulators in the PAR bZip family that are influenced by the circadian clock and that modulate neurotransmission associated with pain and drug addiction were also over-expressed in OIH relative to CON mice. Also notable was the under-expression in OIH relative to CON mice of the Toll-like receptor, nuclear factor-kappa beta, and interferon gamma genes and enrichment of the adaptive immune processes. The results from the present study offer insights to advance the effective use of opioids for pain management while minimizing hyperalgesia.


Assuntos
Imunidade Adaptativa/imunologia , Analgésicos Opioides/toxicidade , Ritmo Circadiano/imunologia , Hiperalgesia/imunologia , Núcleo Accumbens/imunologia , Gânglio Trigeminal/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Ritmo Circadiano/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Gânglio Trigeminal/efeitos dos fármacos
11.
Artigo em Inglês | MEDLINE | ID: mdl-30017083

RESUMO

Bovine herpesvirus (BoHV) types 1 and 5 are neuroinvasive. Cases of BoHV-1-induced encephalitis are not as frequent as those caused by BoHV-5. In this study, the capability of BoHV-5 to induce apoptosis in cell cultures and in the trigeminal ganglion during acute infection of experimentally-infected cattle was analyzed. Apoptotic changes in cell cultures agree with the ability of the viral strains to replicate in each cell line. Marked differences were observed between the in vitro induction of apoptosis by BoHV-1Cooper and BoHV-5 97/613 strains. Apoptotic neurons were clearly evident in the trigeminal ganglion of BoHV-1-infected calves. For BoHV-5 a fewer number of positive neurons was observed. There is an association between the magnitude of bovine herpesviruses replication and the induction of apoptosis in trigeminal ganglion. These findings suggest that the induction of apoptosis and the innate immune response orchestrate the final outcome of alpha herpesviruses infection of the bovine nervous system.


Assuntos
Doenças dos Bovinos/virologia , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/patogenicidade , Herpesvirus Bovino 5/patogenicidade , Neurônios/virologia , Gânglio Trigeminal/virologia , Animais , Apoptose , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/patologia , Linhagem Celular , Células Epiteliais/imunologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Células HeLa , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/imunologia , Herpesvirus Bovino 5/imunologia , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Neurônios/imunologia , Neurônios/patologia , Especificidade da Espécie , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/patologia , Replicação Viral
12.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29899087

RESUMO

Herpes simplex virus 1 (HSV-1) is a prevalent human pathogen that infects the cornea, causing potentially blinding herpetic disease. A clinical herpes vaccine is still lacking. In the present study, a novel prime/pull vaccine was tested in a human leukocyte antigen (HLA) transgenic rabbit model of ocular herpes (HLA Tg rabbits). Three peptide epitopes were selected, from the HSV-1 membrane glycoprotein C (UL44400-408), the DNA replication binding helicase (UL9196-204), and the tegument protein (UL25572-580), all preferentially recognized by CD8+ T cells from "naturally protected" HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who never had recurrent corneal herpetic disease). HLA Tg rabbits were immunized with a mixture of these three ASYMP CD8+ T cell peptide epitopes (UL44400-408, UL9196-204, and UL25572-580), which were delivered subcutaneously with CpG2007 adjuvant (prime). Fifteen days later, half of the rabbits received a topical ocular treatment with a recombinant neurotropic adeno-associated virus type 8 (AAV8) vector expressing the T cell-attracting CXCL10 chemokine (pull). The frequency and function of HSV-specific CD8+ T cells induced by the prime/pull vaccine were assessed in the peripheral blood, cornea, and trigeminal ganglion (TG). Compared to the cells generated in response to peptide immunization alone, the peptide/CXCL10 prime/pull vaccine generated frequent polyfunctional gamma interferon-positive (IFN-γ+) CD107+ CD8+ T cells that infiltrated both the cornea and TG. CD8+ T cell mobilization into the cornea and TG of prime/pull-vaccinated rabbits was associated with a significant reduction in corneal herpesvirus infection and disease following an ocular HSV-1 (strain McKrae) challenge. These findings draw attention to the novel prime/pull vaccine strategy for mobilizing antiviral CD8+ T cells into tissues to protect against herpesvirus infection and disease.IMPORTANCE There is an urgent need for a vaccine against widespread herpes simplex virus infections. The present study demonstrates that immunization of HLA transgenic rabbits with a peptide/CXCL10 prime/pull vaccine triggered mobilization of HSV-specific CD8+ T cells locally into the cornea and TG, the sites of acute and latent herpesvirus infections, respectively. Mobilization of antiviral CD8+ T cells into the cornea and TG of rabbits that received the prime/pull vaccine was associated with protection against ocular herpesvirus infection and disease following an ocular HSV-1 challenge. These results highlight the importance of the prime/pull vaccine strategy to bolster the number and function of protective CD8+ T cells within infected tissues.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL10/metabolismo , Córnea/imunologia , Vacinas contra o Vírus do Herpes Simples/imunologia , Ceratite Herpética/prevenção & controle , Subpopulações de Linfócitos T/imunologia , Gânglio Trigeminal/imunologia , Animais , Animais Geneticamente Modificados , Quimiocina CXCL10/administração & dosagem , Modelos Animais de Doenças , Epitopos/imunologia , Antígenos HLA/genética , Antígenos HLA/metabolismo , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Humanos , Interferon gama/análise , Ceratite Herpética/patologia , Ceratite Herpética/virologia , Proteína 1 de Membrana Associada ao Lisossomo/análise , Coelhos , Simplexvirus/imunologia , Simplexvirus/isolamento & purificação , Vacinas de Subunidades/administração & dosagem , Vacinas de Subunidades/imunologia , Carga Viral
13.
J Virol ; 92(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29491152

RESUMO

We found previously that altering macrophage polarization toward M2 responses by injection of colony-stimulating factor 1 (CSF-1) was more effective in reducing both primary and latent infections in mice ocularly infected with herpes simplex virus 1 (HSV-1) than M1 polarization by gamma interferon (IFN-γ) injection. Cytokines can coordinately regulate macrophage and T helper (TH) responses, with interleukin-4 (IL-4) inducing type 2 TH (TH2) as well as M2 responses and IFN-γ inducing TH1 as well as M1 responses. We have now differentiated the contributions of these immune compartments to protection against latency reactivation and corneal scarring by comparing the effects of infection with recombinant HSV-1 in which the latency-associated transcript (LAT) gene was replaced with either the IL-4 (HSV-IL-4) or IFN-γ (HSV-IFN-γ) gene using infection with the parental (LAT-negative) virus as a control. Analysis of peritoneal macrophages in vitro established that the replacement of LAT with the IL-4 or IFN-γ gene did not affect virus infectivity and promoted polarization appropriately. Protection against corneal scarring was significantly higher in mice ocularly infected with HSV-IL-4 than in those infected with HSV-IFN-γ or parental virus. Levels of primary virus replication in the eyes and trigeminal ganglia (TG) were similar in the three groups of mice, but the numbers of gC+ cells were lower on day 5 postinfection in the eyes of HSV-IL-4-infected mice than in those infected with HSV-IFN-γ or parental virus. Latency and explant reactivation were lower in both HSV-IL-4- and HSV-IFN-γ-infected mice than in those infected with parental virus, with the lowest level of latency being associated with HSV-IL-4 infection. Higher latency correlated with higher levels of CD8, PD-1, and IFN-γ mRNA, while reduced latency and T-cell exhaustion correlated with lower gC+ expression in the TG. Depletion of macrophages increased the levels of latency in all ocularly infected mice compared with their undepleted counterparts, with macrophage depletion increasing latency in the HSV-IL-4 group greater than 3,000-fold. Our results suggest that shifting the innate macrophage immune responses toward M2, rather than M1, responses in HSV-1 infection would improve protection against establishment of latency, reactivation, and eye disease.IMPORTANCE Ocular HSV-1 infections are among the most frequent serious viral eye infections in the United States and a major cause of virus-induced blindness. As establishment of a latent infection in the trigeminal ganglia results in recurrent infection and is associated with corneal scarring, prevention of latency reactivation is a major therapeutic goal. It is well established that absence of latency-associated transcripts (LATs) reduces latency reactivation. Here we demonstrate that recombinant HSV-1 expressing IL-4 (an inducer of TH2/M2 responses) or IFN-γ (an inducer of TH1/M1 responses) in place of LAT further reduced latency, with HSV-IL-4 showing the highest overall protective efficacy. In naive mice, this higher protective efficacy was mediated by innate rather than adaptive immune responses. Although both M1 and M2 macrophage responses were protective, shifting macrophages toward an M2 response through expression of IL-4 was more effective in curtailing ocular HSV-1 latency reactivation.


Assuntos
Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/fisiologia , Interleucina-4/imunologia , Macrófagos Peritoneais/imunologia , Células Th2/imunologia , Ativação Viral/imunologia , Animais , Células Cultivadas , Lesões da Córnea/imunologia , Lesões da Córnea/prevenção & controle , Lesões da Córnea/virologia , Olho/imunologia , Olho/virologia , Oftalmopatias/virologia , Infecções Oculares/imunologia , Infecções Oculares/virologia , Feminino , Herpes Simples/virologia , Interferon gama/genética , Interleucina-4/biossíntese , Interleucina-4/genética , Macrófagos Peritoneais/classificação , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Coelhos , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/virologia , Latência Viral/fisiologia , Replicação Viral/imunologia
14.
Virology ; 514: 124-133, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29175626

RESUMO

The lip scarification model of herpes simplex virus type 1 (HSV-1) infection can be used to study acute infection in the orofacial tissue and the establishment of viral latency. In this study, mice were inoculated with HSV-1 and tissue harvested during the acute phase of infection. Clinical presentation of classical open sores on the lip of infected mice was observed. We defined the histopathology, disease scores, and immune infiltration of the lower lip during the formation and resolution of the clinical lesions. Finally, the kinetics of virus replication and transport of viral genomes to the trigeminal ganglia were established. With the virological and pathologic events of acute infection defined, the HSV-1 lip scarification model can now be used to study primary HSV-1 infection, invasion of the trigeminal ganglia, and establishment of latency.


Assuntos
Herpes Simples/imunologia , Herpes Simples/patologia , Herpesvirus Humano 1/fisiologia , Lábio/virologia , Replicação Viral , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Replicação do DNA , Modelos Animais de Doenças , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Humanos , Cinética , Lábio/imunologia , Lábio/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/virologia , Latência Viral
15.
J Neuroinflammation ; 14(1): 249, 2017 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-29246259

RESUMO

BACKGROUND: Accidental mandibular nerve injury may occur during tooth extraction or implant procedures, causing ectopic orofacial pain. The exact mechanisms underlying ectopic orofacial pain following mandibular nerve injury is still unknown. Here, we investigated the role of macrophages and tumor necrosis factor alpha (TNFα) in the trigeminal ganglion (TG) in ectopic orofacial pain following inferior alveolar nerve transection (IANX). METHODS: IANX was performed and the mechanical head-withdrawal threshold (MHWT) in the whisker pad skin ipsilateral to IANX was measured for 15 days. Expression of Iba1 in the TG was examined on day 3 after IANX, and the MHWT in the whisker pad skin ipsilateral to IANX was measured following successive intra-ganglion administration of the macrophage depletion agent liposomal clodronate Clophosome-A (LCCA). TNFα expression in the TG and the MHWT in the whisker pad skin ipsilateral to IANX following successive intra-ganglion administration of the TNFα blocker etanercept were measured on day 3 after IANX, and tumor necrosis factor receptor-1 (TNFR1) immunoreactive (IR) cells in the TG were analyzed immunohistochemically on day 3. RESULTS: The MHWT in the whisker pad skin was significantly decreased for 15 days, and the number of Iba1-IR cells was significantly increased in the TG on day 3 after IANX. Successive intra-ganglion administration of the macrophage depletion agent LCCA significantly reduced the increased number of Iba1-IR cells in the TG and reversed the IANX-induced decrease in MHWT in the whisker pad skin. TNFα expression was increased in the TG on day 3 after IANX and was reduced following successive intra-ganglion administration of the TNFα inhibitor etanercept. The decreased MHWT was also recovered by etanercept administration, and TNFR1-IR cells in the TG were increased on day 3 following IANX. CONCLUSIONS: These findings suggest that signaling cascades resulting from the production of TNFα by infiltrated macrophages in the TG contributes to the development of ectopic mechanical allodynia in whisker pad skin following IANX.


Assuntos
Dor Facial/imunologia , Hiperalgesia/imunologia , Macrófagos/imunologia , Gânglio Trigeminal/imunologia , Traumatismos do Nervo Trigêmeo/imunologia , Animais , Dor Facial/etiologia , Masculino , Nervo Mandibular , Neuralgia/imunologia , Estimulação Física , Ratos , Ratos Sprague-Dawley , Traumatismos do Nervo Trigêmeo/complicações , Fator de Necrose Tumoral alfa/biossíntese
16.
PLoS Pathog ; 13(12): e1006732, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29206240

RESUMO

Herpes simplex virus type 1 (HSV-1) latency in sensory ganglia such as trigeminal ganglia (TG) is associated with a persistent immune infiltrate that includes effector memory CD8+ T cells that can influence HSV-1 reactivation. In C57BL/6 mice, HSV-1 induces a highly skewed CD8+ T cell repertoire, in which half of CD8+ T cells (gB-CD8s) recognize a single epitope on glycoprotein B (gB498-505), while the remainder (non-gB-CD8s) recognize, in varying proportions, 19 subdominant epitopes on 12 viral proteins. The gB-CD8s remain functional in TG throughout latency, while non-gB-CD8s exhibit varying degrees of functional compromise. To understand how dominance hierarchies relate to CD8+ T cell function during latency, we characterized the TG-associated CD8+ T cells following corneal infection with a recombinant HSV-1 lacking the immunodominant gB498-505 epitope (S1L). S1L induced a numerically equivalent CD8+ T cell infiltrate in the TG that was HSV-specific, but lacked specificity for gB498-505. Instead, there was a general increase of non-gB-CD8s with specific subdominant epitopes arising to codominance. In a latent S1L infection, non-gB-CD8s in the TG showed a hierarchy targeting different epitopes at latency compared to at acute times, and these cells retained an increased functionality at latency. In a latent S1L infection, these non-gB-CD8s also display an equivalent ability to block HSV reactivation in ex vivo ganglionic cultures compared to TG infected with wild type HSV-1. These data indicate that loss of the immunodominant gB498-505 epitope alters the dominance hierarchy and reduces functional compromise of CD8+ T cells specific for subdominant HSV-1 epitopes during viral latency.


Assuntos
Linfócitos T CD8-Positivos/virologia , Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Epitopos Imunodominantes/metabolismo , Gânglio Trigeminal/virologia , Proteínas do Envelope Viral/metabolismo , Substituição de Aminoácidos , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , DNA Recombinante/metabolismo , Infecções Oculares Virais/imunologia , Infecções Oculares Virais/metabolismo , Infecções Oculares Virais/patologia , Infecções Oculares Virais/virologia , Feminino , Deleção de Genes , Herpes Simples/metabolismo , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Mutação Puntual , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/patologia , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Ativação Viral , Latência Viral
17.
Vet Res Commun ; 41(4): 279-288, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28942490

RESUMO

Bovine herpesvirus type 5 (BoHV-5) is an important pathogen that causes meningoencephalitis in cattle. Few studies have used the mouse as a model for BoHV-5 infection. Despite the fact that BoHV-5 can infect mice with immune deficiencies, little is known about viral replication, immune response, and the course of infection in the central nervous system (CNS) of wild-type mice. Therefore, the aim of this study was to evaluate the response in the CNS of BALB/c mice acutely infected with BoHV-5 at different days post-inoculation (dpi). BoHV-5, when inoculated intracranially, was able to infect and replicate within the CNS of BALB/c mice. Until 15 dpi, the mice were able to survive without showing prominent neurological signs. The infection was accompanied by a Th1 immune response, with a significant expression of the cytokines IFN-γ and TNF-α and chemokine CCL-2. The expression of these cytokines and chemokines was most significant in the early course of infection (3 and 4 dpi), and it was followed by meningoencephalitis with perivascular cuffing and periventriculitis, composed mainly of macrophages and lymphocytes. After the expression of cytokines and chemokine, the mice were able to curb BoHV-5 acute infection in the brain, since there was a decrease in the number of BoHV-5 DNA copies after 3 dpi and viable viral particles were not detected after 6 dpi. Importantly, BoHV-5 was able to infect the trigeminal ganglia during acute infection, since a large number of BoHV-5 DNA copies were detected on 1 and 2 dpi.


Assuntos
Sistema Nervoso Central/imunologia , Suscetibilidade a Doenças/imunologia , Infecções por Herpesviridae/imunologia , Herpesvirus Bovino 5/imunologia , Animais , Sistema Nervoso Central/virologia , Citocinas/sangue , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/imunologia , Herpesvirus Bovino 5/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/virologia , Replicação Viral
18.
mBio ; 8(4)2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28679745

RESUMO

While antibody responses to neurovirulent pathogens are critical for clearance, the extent to which antibodies access the nervous system to ameliorate infection is poorly understood. In this study on herpes simplex virus 1 (HSV-1), we demonstrate that HSV-specific antibodies are present during HSV-1 latency in the nervous systems of both mice and humans. We show that antibody-secreting cells entered the trigeminal ganglion (TG), a key site of HSV infection, and persisted long after the establishment of latent infection. We also demonstrate the ability of passively administered IgG to enter the TG independently of infection, showing that the naive TG is accessible to antibodies. The translational implication of this finding is that human fetal neural tissue could contain HSV-specific maternally derived antibodies. Exploring this possibility, we observed HSV-specific IgG in HSV DNA-negative human fetal TG, suggesting passive transfer of maternal immunity into the prenatal nervous system. To further investigate the role of maternal antibodies in the neonatal nervous system, we established a murine model to demonstrate that maternal IgG can access and persist in neonatal TG. This maternal antibody not only prevented disseminated infection but also completely protected the neonate from neurological disease and death following HSV challenge. Maternal antibodies therefore have a potent protective role in the neonatal nervous system against HSV infection. These findings strongly support the concept that prevention of prenatal and neonatal neurotropic infections can be achieved through maternal immunization.IMPORTANCE Herpes simplex virus 1 is a common infection of the nervous system that causes devastating neonatal disease. Using mouse and human tissue, we discovered that antiviral antibodies accumulate in neural tissue after HSV-1 infection in adults. Similarly, these antibodies pass to the offspring during pregnancy. We found that antiviral maternal antibodies can readily access neural tissue of the fetus and neonate. These maternal antibodies then protect neonatal mice against HSV-1 neurological infection and death. These results underscore the previously unappreciated role of maternal antibodies in protecting fetal and newborn nervous systems against infection. These data suggest that maternal immunization would be efficacious at preventing fetal/neonatal neurological infections.


Assuntos
Anticorpos Antivirais/imunologia , Herpes Simples/prevenção & controle , Herpesvirus Humano 1/imunologia , Imunidade Materno-Adquirida , Sistema Nervoso/imunologia , Gânglio Trigeminal/imunologia , Animais , Animais Recém-Nascidos , Anticorpos Antivirais/biossíntese , Feminino , Herpes Simples/imunologia , Humanos , Imunização Passiva , Imunoglobulina G/administração & dosagem , Imunoglobulina G/imunologia , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Camundongos , Mães , Gravidez , Latência Viral
19.
J Virol ; 91(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28490594

RESUMO

Dok-1 and Dok-2 negatively regulate responses downstream of several immune receptors in lymphoid and myeloid cells. Recent evidence showed that Dok proteins are essential in the formation of memory CD8+ T cells to an exogenous epitope expressed by vaccinia virus; however, the importance of Dok-1 and Dok-2 in the control of viral infection is unknown. Here, we investigated the role of Dok proteins in modulating the immune response against herpes simplex virus 1 (HSV-1) in a mouse model of ocular infection. During acute infection, viral titers in the eye were similar in wild-type (WT) and Dok-1 and Dok-2 double-knockout (DKO) mice, and the percentages of infiltrating leukocytes were similar in DKO and WT corneas and trigeminal ganglia (TG). DKO mice exhibited a diminished CD8+ T cell response to the immunodominant HSV-1 glycoprotein B (gB) epitope in the spleen and draining lymph nodes compared to WT mice during acute infection. Remarkably, gB-specific CD8+ T cells almost completely disappeared in the spleens of DKO mice during latency, and the reduction of CD8+ effector memory T (Tem) cells was more severe than that of CD8+ central memory T (Tcm) cells. The percentage of gB-specific CD8+ T cells in TG during latency was also dramatically reduced in DKO mice; however, they were phenotypically similar to those from WT mice. In ex vivo assays, reactivation was detected earlier in TG cultures from infected DKO versus WT mice. Thus, Dok-1 and Dok-2 promote survival of gB-specific CD8+ T cells in TG latently infected with HSV-1.IMPORTANCE HSV-1 establishes lifelong latency in sensory neurons of trigeminal ganglia (TG). In humans, HSV-1 is able to sporadically reactivate from latently infected neurons and establish a lytic infection at a site to which the neurons project. Most herpetic disease in humans is due to reactivation of HSV-1 from latency rather than to primary acute infection. CD8+ T cells are thought to play an important role in controlling recurrent infections. In this study, we examined the involvement of Dok-1 and Dok-2 signaling proteins in the control of HSV-1 infection. We provide evidence that Dok proteins are required to maintain a CD8+ T cell response against HSV-1 during latency-especially CD8+ Tem cells-and that they negatively affect HSV-1 reactivation from latency. Elucidating Dok-mediated mechanisms involved in the control of HSV-1 reactivation from latency might contribute to the development of therapeutic strategies to prevent recurrent HSV-1-induced pathology.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linfócitos T CD8-Positivos/imunologia , Proteínas de Ligação a DNA/metabolismo , Herpesvirus Humano 1/imunologia , Ceratite Herpética/imunologia , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Animais , Proteínas de Ligação a DNA/deficiência , Modelos Animais de Doenças , Epitopos de Linfócito T/imunologia , Epitopos Imunodominantes/imunologia , Linfonodos/imunologia , Camundongos , Camundongos Knockout , Fosfoproteínas/deficiência , Baço/imunologia , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/virologia , Proteínas do Envelope Viral/imunologia
20.
J Virol ; 91(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28468883

RESUMO

Herpes simplex virus 1 (HSV-1) establishes latency within the sensory neurons of the trigeminal ganglia (TG). HSV-specific memory CD8+ T cells play a critical role in preventing HSV-1 reactivation from TG and subsequent virus shedding in tears that trigger recurrent corneal herpetic disease. The CXC chemokine ligand 10 (CXCL10)/CXC chemokine receptor 3 (CXCR3) chemokine pathway promotes T cell immunity to many viral pathogens, but its importance in CD8+ T cell immunity to recurrent herpes has been poorly elucidated. In this study, we determined how the CXCL10/CXCR3 pathway affects TG- and cornea-resident CD8+ T cell responses to recurrent ocular herpesvirus infection and disease using a well-established murine model in which HSV-1 reactivation was induced from latently infected TG by UV-B light. Following UV-B-induced HSV-1 reactivation, a significant increase in both the number and function of HSV-specific CXCR3+ CD8+ T cells was detected in TG and corneas of protected C57BL/6 (B6) mice, but not in TG and corneas of nonprotected CXCL10-/- or CXCR3-/- deficient mice. This increase was associated with a significant reduction in both virus shedding and recurrent corneal herpetic disease. Furthermore, delivery of exogenous CXCL10 chemokine in TG of CXCL10-/- mice, using the neurotropic adeno-associated virus type 8 (AAV8) vector, boosted the number and function of effector memory CD8+ T cells (TEM) and tissue-resident memory CD8+ T cells (TRM), but not of central memory CD8+ T cells (TCM), locally within TG, and improved protection against recurrent herpesvirus infection and disease in CXCL10-/- deficient mice. These findings demonstrate that the CXCL10/CXCR3 chemokine pathway is critical in shaping CD8+ T cell immunity, locally within latently infected tissues, which protects against recurrent herpesvirus infection and disease.IMPORTANCE We determined how the CXCL10/CXCR3 pathway affects CD8+ T cell responses to recurrent ocular herpesvirus infection and disease. Using a well-established murine model, in which HSV-1 reactivation in latently infected trigeminal ganglia was induced by UV-B light, we demonstrated that lack of either CXCL10 chemokine or its CXCR3 receptor compromised the mobilization of functional CD8+ TEM and CD8+ TRM cells within latently infected trigeminal ganglia following virus reactivation. This lack of T cell mobilization was associated with an increase in recurrent ocular herpesvirus infection and disease. Inversely, augmenting the amount of CXCL10 in trigeminal ganglia of latently infected CXCL10-deficient mice significantly restored the number of local antiviral CD8+ TEM and CD8+ TRM cells associated with protection against recurrent ocular herpes. Based on these findings, a novel "prime/pull" therapeutic ocular herpes vaccine strategy is proposed and discussed.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL10/metabolismo , Herpes Simples/imunologia , Memória Imunológica , Receptores CXCR3/metabolismo , Simplexvirus/imunologia , Animais , Quimiocina CXCL10/deficiência , Córnea/imunologia , Córnea/virologia , Modelos Animais de Doenças , Herpes Simples/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CXCR3/deficiência , Recidiva , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...